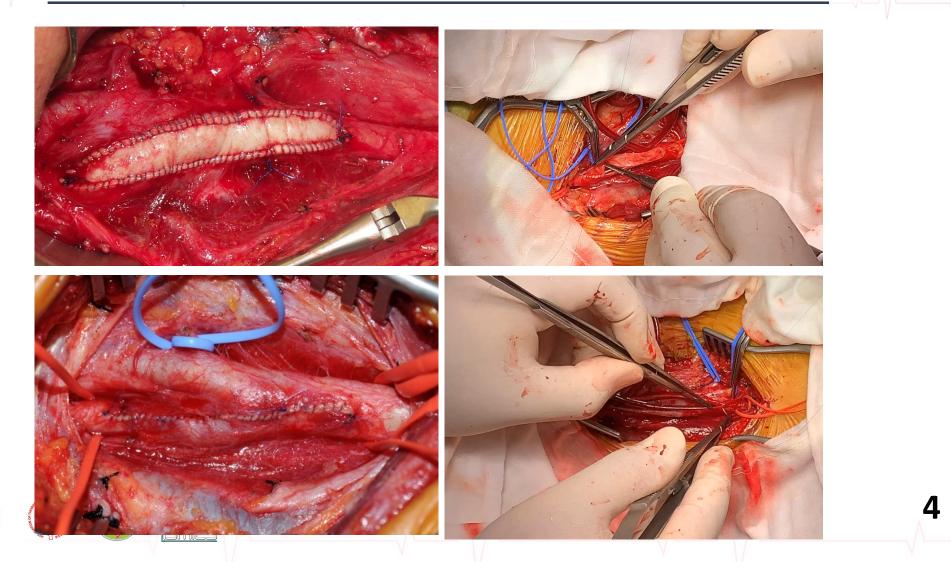


Primary closure vs. Patch angioplasty in 🛞 🏈 carotid endarterectomy

Dong-ik Kim, MD, PhD, FACS (dikim@skku.edu) Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea

- Name : Dong-ik Kim (<u>dikim@skku.edu</u>)
- Specialty : Vascular Surgery
- Prof. Sungkyunkwan University, Samsung Medical Center,
- Fellow, National Academy of Medicine of Korea
- (Past) President, The Korean Society for Vascular Surgery
- (Past) Vice President of UIP
- (Past) President, Asian Venous forum
- Congress President, 2015 Seoul UIP.



Controversies in carotid endarterectomy

- Indications for surgery
- Perioperative medication
- General vs. regional anesthesia
- Surgery vs. stent
- Shunt vs no. shunt
- Stent vs no. stent
- Primary closure vs. patch angioplasty
- Standard vs. eversion
- Intraoperative neurological monitoring vs. no

How to close the arteriotomy in CEA

ATCSA202

Review of articles : Patch angioplasty vs. Primary closure

- Patch angioplasty can reduce the risk of perioperative stroke or re-stenosis and subsequent ischemic stroke
- **Primary closure** is not inferior to patch angioplasty

Patch angioplasty preferred article : CREST study

- Brott et al. (Mayor clinic) Stroke 2015; 46:757
- Patch closure is associated with reduction in restenosis, though it is not associated with improved clinical outcomes.

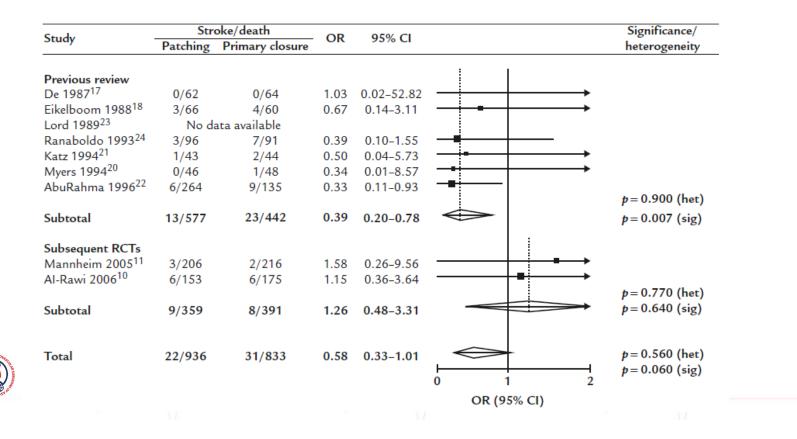
Two-year restenosis rates after CEA with patch versus no patch

	Patch # events (rate ± SEM)	No Patch # events (rate ± SEM)	Hazard Ratio for Patch vs No Patch (95% CI)*	P-value	Hazard Ration (95% CI) [†]	P- value
Restenosis	20 (3.1±0.7)	32 (10.7±1.8)	0.27 (0.15,0.48)	< 0.0001	0.35 (0.16,0.74)	0.006

adjusted for symptomatic status

⁷adjusted for symptomatic status and surgeon board specialty

46 patients (13 no patch; 33 patch) are not included in the restenosis endpoint as they did not have ultrasounds read by the u patch) did not have information on board specialty.



Patch angioplasty preferred article : Cochran Review 2009

• Review of prospective randomized trials (1,967 patients)

TCSA202

• Meta-analysis suggests that patch angioplasty reduces the combined perioperative and long-term risk of stroke and the risk of restenosis.

CEA patch not always needed : J Vasc Surg 2016;64:678

- Avgerinos et al. (Univ. Pittsburgh) J Vasc Surg 2016;64:678.
- 1,737 CEA patients (mean FU : 49.8 month)
- Primary closure (412 23.7%), Patch (873 50.3%), Eversion (452 26.0%)
- Baseline risk factors and statin use, but not the type of closure, affect perioperative and long-term outcomes after CEA.

Table II. Perioperative outcomes stratified by carotid endarterectomy (CEA) technique

Table III.	Long-term stroke	(including the	postoperative	ones) and	restenosis r	rates after c	arotid endartere	ctomy (CEA)
stratified by	CEA technique							

	PRC	PAC	EVC	P value	
Nerve injury	7 (2.0)	20 (2.7)	11 (3.2)	.620	Five-year any s Ten-year any s
Reintervention for bleeding	6 (1.5)	14 (1.6)	5 (1.2)	.812	Five-year ipsila Ten-year ipsila
MI	2 (0.5)	16(1.8)	8 (1.8)	.153	Five-year rester Five-year rester
Stroke	9 (2.2)	14 (1.6)	9 (2.0)	.742	Ten-year rester
Death	2 (0.5)	7 (0.8)	4 (0.9)	.767	Ten-year rester
Combined stroke/ death	11 (2.7)	19 (2.2)	13 (2.9)	.709	Symptomatic r Follow-up, mo
Combined MI/	11 (2.7)	31 (3.6)	19 (4.2)	.471	Reintervention
stroke/death					EVC, Eversion d

s	PRC	PAC	EVC	P pals
Five-year any stroke	5.3 ± 1.2 (n = 158)	8.8 ± 1.2 (n = 283)	5.7 ± 1.2 (n = 122)	.407
Ten-year any stroke	$15.0 \pm 4.0 (n = 33)$	$16.9 \pm 2.8 (n = 40)$	$10.5 \pm 2.7 (n = 7)$.407
Five-year ipsilateral stroke	$3.4 \pm 1.0 (n = 158)$	4.5 ± 0.8 (n = 292)	3.4 ± 0.9 (n = 123)	.750
Ten-year ipsilateral stroke	$8.0 \pm 3.0 (n = 33)$	$8.5 \pm 2.2 (n = 40)$	$6.8 \pm 2.2 (n = 7)$.750
Five-year restenosis 50%	$13.4 \pm 2.4 (n = 73)$	$15.4 \pm 2.1 (n = 120)$	$18.5 \pm 3.0^{b} (n = 52)$.124
Five-year restenosis 70%	$4.8 \pm 1.4 (n = 76)$	$6.3 \pm 1.4 (n = 124)$	8.4 ± 2.0 (n = 56)	.122
Ten-year restenosis 50%	23.6 ± 5.8 (n = 8)	24.3 ± 5.8 (n = 8)	$40.7 \pm 8.6^{\circ} (n = 1)$.124
Ten-year restenosis 70%	$6.7 \pm 2.3 (n = 8)$	$11.9 \pm 4.2 (n = 8)$	$11.2 \pm 3.4 (n = 2)$.122
Symptomatic restenosis	4/34 (11.8%)	9/63 (14.3%)	7/49 (14.3%)	.932
Follow-up, months, mean ± SD	53.616 ± 41.902	51.215 ± 36.178	43.435 ± 30.137 ^{a,b}	
Reintervention	9/34 (26.5%)	12/63 (19.0%)	16/49 (32.7%)	.256

8

closure; PAC, patch closure; PRC, primary closure; SD, standard deviation.

are presented as percentage ± standard error (number at risk) unless otherwise indicated

Indicates P < .05 compared with the PRC group.

EVC, Eversion closure; MI, myocardial infarction; PAC, patch closure; Indicates P < .05 compared with the PAC group.

PRC, primary closure. Data are presented as number (%)

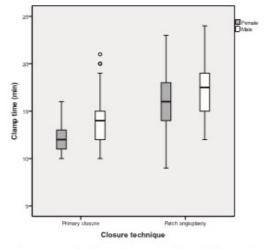
CEA patch not always needed : Ann Vasc Surg 2016; 30 : 248

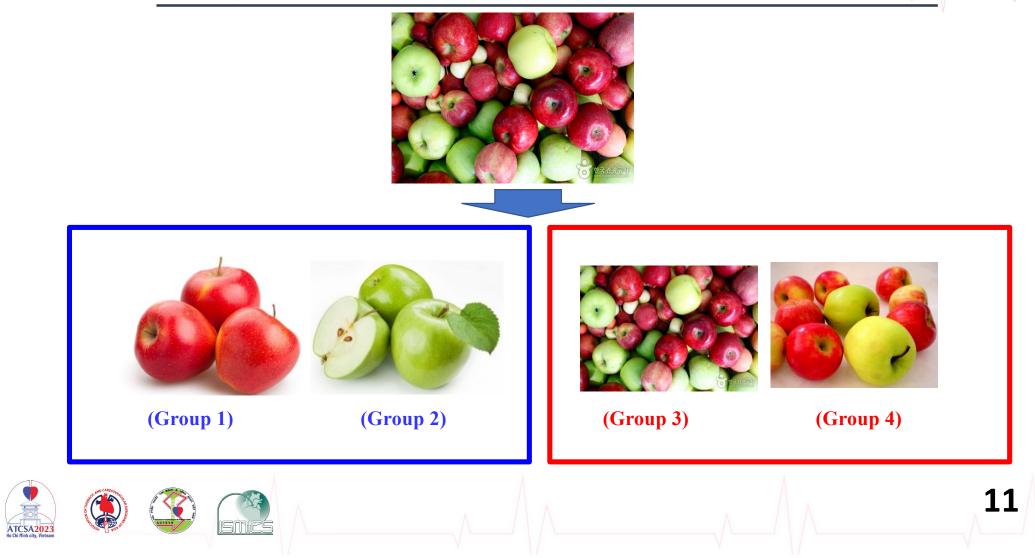
- Maertens et al. (Sint-Lucas Hosp. Belgium). Ann Vasc Surg 2016; 30 : 248
- Primary closure appears to be an equivalent closure technique compared with patch angioplasty when used in selected patients.

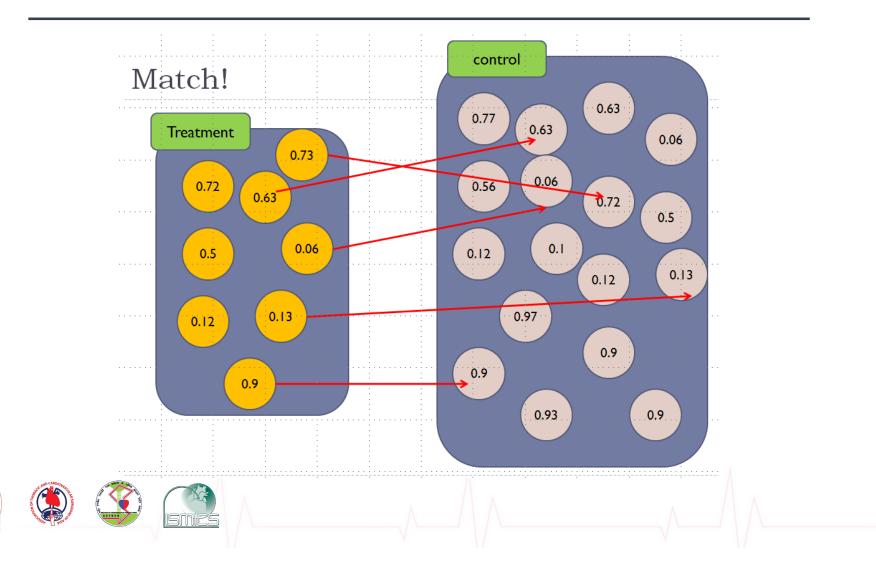
Table I. Complication rate comparing primary

 closure and patch angioplasty closure technique

	Closure to		
Complication type	Primary closure, n (%)	Patch angioplasty, n (%)	P value
No complications	106	98	
Total complications	4 (3.6)	5 (4.9)	0.68
Bleeding	2 (1.8)	1 (1.0)	0.24
Cerebrovascular event	0	1 (1.0)	1.00
Infection	0	0	-
Acute myocardial infarction	0	0	_
Nerve damage	2 (1.8)	2 (1.9)	1.00
Hyperperfusion and mortality	0	1 (1.0)	1.00




Fig. 1. Box plot illustrating a significant difference in clamp time (min) during patch angioplasty and primary closure (P < 0.001).


- Why are there so many differences in their conclusions?
- What is the problem of randomized control trials

Randomized Control Trial

Propensity Matching analysis

ATCSA2023

Propensity Score Matching

- first published by Paul Rosenbaum & Donald Rubin in 1983
- balance the covariates and mimic randomization
- to reduce the bias due to confounding variables that could be found in an estimate of the treatment effect obtained from simply comparing outcomes among units between control and treated group

Methods

- Retrospective review
- Inclusion : 1,383 CEAs

Primary closure (PC): n=608(44%) Patch angioplasty (PA): n=775(56%)

- Exclusion : 200 patients
 - 1) Concomitant CEA and CABG
 - 2) Iatrogenic ICA injury
 - 3) Previous stent insertion

Endpoints

- Restenosis rate
- Perioperative complication
- Stenosis free survival
- Stroke free survival
- Overall survival

- **Patient selection** of PC and PA depended on the surgeon's preference
- All CEAs were performed under the general anesthesia and routine carotid shunt (Pruit-Inahara[®] carotid shunt, LeMaitre Vascular, Inc.)
- Bovine pericardial patch for patch angioplasty
- **Postoperative medication** : anti-platelet agent (aspirin,clopidogrel, pletal) or anticoagulation agent (warfarin) was routinely prescribed.

Methods : FU

- **Duplex ultrasonography** : to determine restenosis or occlusion (1, 6, 12, 24 month FU)
- Restenosis was defined as stenosis > 50% or PSV > 300cm/sec on DUS
- When significant restenosis was detected, its severity was reconfirmed with CT angiography(CTA).

Baseline characteristics : pre-matching

Variable	Total (n=1383)	PC (n=608, 44%)	PA(patch) (n=775, 56%)	Р
Age ≤60	208 (15)	98 (16.1)	110 (14.2)	0.272
50 < Age ≤70	581 (42)	263 (43.3)	318 (41)	
70 < Age	594 (43)	247 (40.6)	347 (44.8)	
Gender (Male)	1191 (86.1)	532 (87.5)	659 (85)	0.188
Hypertension	1079 (78)	479 (78.8)	600 (77.4)	0.543
Diabetes	570 (41.2)	250 (41.1)	320 (41.3)	0.949
Dyslipidemia	1049 (75.8)	445 (73.2)	604 (77.9)	0.041
Atrial_fibrillation	77 (5.6)	28 (4.6)	49 (6.3)	0.167
Previous PCI or CABG	369 (26.7)	134 (22)	235 (30.3)	0.001
Smoking	664 (48.7)	297 (48.8)	367 (47.4)	0.581
Contralateral ICA occlusion	80 (5.8)	32 (5.3)	48 (6.2)	0.462
Stenosis degree (≥70%)	1186 (85.8)	502 (82.6)	684 (88.3)	0.003
Symptomatic status	470 (34)	184 (30.3)	286 (36.9)	0.010
TIA	184 (39.1)	82 (44.6)	102 (35.7)	
Amaurosis fugax	42 (8.9)	10 (5.4)	32 (11.2)	
Stroke	244 (51.9)	92 (50)	152 (53.1)	

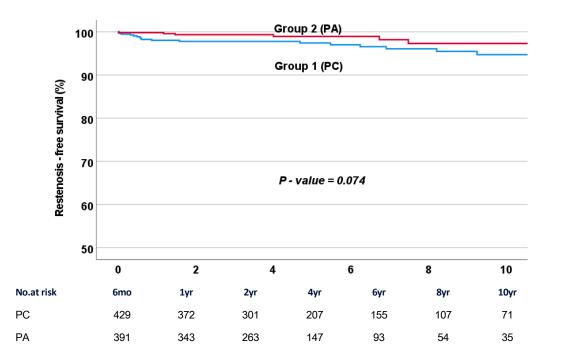
ATCSA2023

Baseline characteristics : post matching

Variable	Total (n=1144)	PC (n=572, 50%)	PA(patch) (n=572, 50%)	Ρ
Age ≤60	180 (15.7)	91 (15.9)	89 (15.6)	0.834
60 < Age ≤70	486 (42.5)	247 (43.2)	239 (41.8)	
70 < Age	478 (41.8)	234 (40.9)	244 (42.7)	
Gender (Male)	992 (86.7)	503 (87.9)	489 (85.5)	0.223
Hypertension	894 (78.1)	454 (79.4)	440 (76.9)	0.317
Diabetes	449 (39.2)	235 (41.1)	214 (37.4)	0.204
Dyslipidemia	862 (75.3)	431 (75.3)	431 (75.3)	1.000
Atrial_fibrillation	59 (5.2)	28 (4.9)	31 (5.4)	0.688
Previous PCI or CABG	247 (21.6)	134 (23.4)	113 (19.8)	0.131
Smoking	560 (49)	280 (49)	280 (49)	1.000
Contralateral ICA occlusion	60 (5.2)	29 (5.1)	31 (5.4)	0.791
Stenosis degree (≥70%)	1003 (87.7)	491 (85.8)	512 (89.5)	0.059
Symptomatic status	368 (32.2)	184 (32.2)	184 (32.2)	1.000
TIA	143 (38.9)	82 (44.6)	61 (33.1)	
Amaurosis fugax	32 (8.7)	10 (5.4)	22 (12)	
Stroke	193 (52.4)	92 (50)	101 (54.9)	

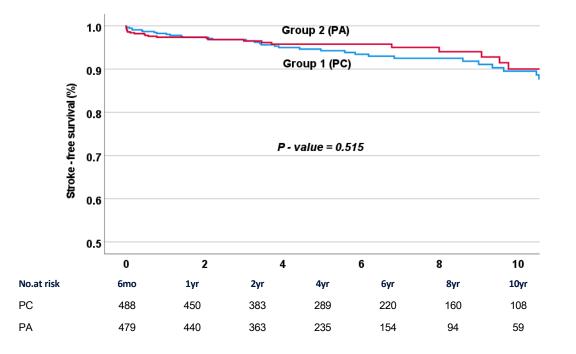
ATCSA2023

Early Postoperative Outcomes (< 30 days)

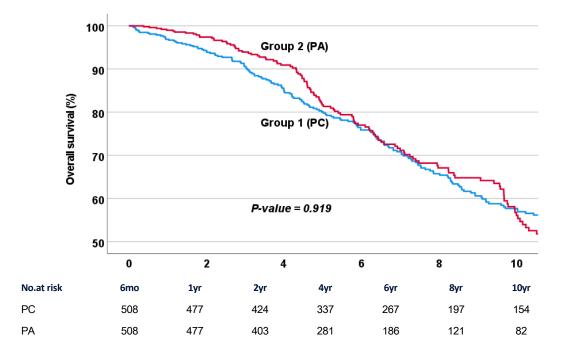

Variable	Total (n=1144)	PC (n=572, 50%)	PA (patch) (n=572, 50%)	P-value
lpsilateral stroke	11 (1.0)	3 (0.5)	8 (1.4)	0.130
Any stroke	12 (1.0)	4 (0.7)	8 (1.4)	0.246
CN palsy*	44 (3.8)	23 (4.0)	21 (3.7)	0.758
Bleeding requiring re-operation	8 (0.7)	1 (0.2)	7 (1.2)	0.069

* Hypoglossal nerve, gloss pharyngeal nerve, CN 5,7, vocal cord palsy

* Permanent CN palsy : n=6



Restenosis free survival



Stroke free survival

Overall survival

Articles (Dr. DI KIM)

Eur J Vasc Endovasc Surg (2017) 54, 573-578

Editor's Choice — Comparison of Early Outcomes and Restenosis Rate Between Carotid Endarterectomy and Carotid Artery Stenting Using Propensity Score Matching Analysis

J Korean Surg Soc 2010;78:314-319 DOI: 10.4174/jkss.2010.78.5.314 Comparison of Outcomes between Primary Closure vs. Patch Angioplasty in Carotid Endarterectomy

Surg Today (2007) 37:187-191 DOI 10.1007/s00595-006-3385-4

Primary Closure After a Carotid Endarterectomy

Dong-Ik Kim¹, Ji-Young Moon¹, Chul-Hyung Lee¹, Do-Yool Kim¹, Young-Sam Jang¹, Gyeong-Moon Kim², Chin-Sang Chung², Kwang-Ho Lee, and Seon-Woo Kim³

Conclusions

- There was no significant differences in postoperative clinical outcomes between primary closure and patch angioplasty.
- Our clinical data suggested that primary closure deserves more recommendable for experienced vascular surgeon rather than patch angioplasty.

Thank you for your attention

